

Competence in Salt

Foundation of Potash Research Institute of GDR	1951
Foundation of K-UTEC GmbH	1992
Spin-off of K-UTEC AG Salt Technologies	2008
Management Board	Dr Heiner Marx Dr Markus Pfänder Dr Sebastian Lüning
Employees	approx. 100

_7 Decades Experience in Mineral Salt Industry

Projects Worldwide

Australia Argentina Austria Belarus Bolivia Botswana Brazil Chile China Egypt Eritrea Ethiopia France Ghana Hungary India Iran Laos Mexico Peru Russia Saudi Arabia Spain Thailand Tunisia **United Kingdom** USA

Brine depositsSolid deposits

Company Structure

Department of Chemical and Physical Engineering | Fields of Activities

- Test work in laboratory and pilot scale
- Development of process routes
- Feasibility studies and economic project evaluation
- Supply of key equipment
- Basic engineering
- Support in plant installation, commissioning and training of staff

Department of Chemical and Physical Engineering | Demonstration Facilities

"Mannheim Process"

SOP synthesis according to "Mannheim Process" runs in two discrete steps:

1.)
$$KCI + H_2SO_4 \rightarrow KHSO_4 + HCI$$

2.)
$$KCI + KHSO_4 \rightarrow K_2SO_4 + HCI$$

First step is exothermic and would theoretically proceed on ambient temperature, but the second step is endothermic and needs temperatures of 600 - 700 °C.

This process is both, capital and energy intensive and makes sense only if there is a demand for HCl.

K-UTEC's suggestion is to avoid the high temperature process and to operate the synthesis of SOP in aqueous solution.

Alternatives to "Mannheim Process"

Pro	ocess Alternatives	Main Process Steps	Comments
1	Production of SOP from KCI and H ₂ SO ₄ "Modified Process"	 Reaction of KCI with H₂SO₄ at lower temperature (70 - 100°C) in a solid bed reactor Further treatment in aqueous solution 	 Energy consumption is reduced HCl output is reduced by half CaCl₂ production can be done based on mother liquor
2	Production of SOP from KCI and MgSO ₄ "Schoenite Process"	 Conversion of KCl and MgSO₄ in solution at low temperatures to Schoenite Conversion of Schoenite to K₂SO₄ at a temperature of about 50°C 	 By-product is MgCl₂ MgCl₂ can be used for CaCl₂ production using Ca(OH)₂; by-product is Mg(OH)₂
3	Production of SOP from KCI and Na ₂ SO ₄ "Glaserite Process"	 Conversion of KCl and Na₂SO₄ in solution at low temperature to Glaserite Decomposition of Glaserite to K₂SO₄ at environmental temperature 	- By-product is NaCl
4	Production of SOP from KCI and (NH ₄) ₂ SO ₄	 Reaction of KCl with (NH₄)₂SO₄ in solution to K₂SO₄ and NH₄Cl Crystallisation of K₂SO₄ by cooling 	 Recovery of SOP is low, because of the solubility equilibrium By-product is NH₄CI Crystallisation of a mixed product (K₂SO₄/NH₄CI) as NK fertiliser is recommended (or production of NPK fertiliser)

SOP production based on KCl and H₂SO₄ with reduced HCl production (Modified Process)

ML = Mother Liquor

SOP production based on KCl and MgSO₄ (Schoenite Process)

ML = Mother Liquor

SOP production based on KCl and Na₂SO₄ (Glaserite Process)

ML = Mother Liquor

SOP production based on KCl and (NH₄)₂SO₄

Project Example 1

SOP via Schoenite Process

Location	Runn of Kutch, India
Resource	Bittern resulting from sea salt production
Capacity SOP (K ₂ SO ₄)	100,000 tpa

K-UTEC's Scope

Test Work

Process Design

Basic Engineering

Partial Detailed Engineering

Support in Commissioning (2015)

Project Example 2

SOP via Schoenite Process

Location	Beyondie Lake, Australia
Resource	Natural Brine
Capacity SOP (K ₂ SO ₄)	90,000 tpa

K-UTEC's Scope

Test Work

Process Design and Basic Engineering
Detailed Engineering for the Process Plant
Procurement and Supply of Key Components
Support in Commissioning (2021)

K-UIEC SALT TECHNOLOGIES

Project Example 2

Commissioning since 2021

K-UIEC SALT TECHNOLOGIES

Project Example 3

SOP via Glaserite Process

Location	Ebensee, Austria
Resource	KCI containing effluent brine
Capacity SOP (K ₂ SO ₄)	20,000 tpa
Capacity NaCl	60,000 tpa

SOP conversion reactor

Circulation pumps

K-UTEC's Scope

Test Work

Process Design and Basic Engineering

Partial Detailed Engineering

Support in Commissioning

Plant in Operation since 2006

Capacity Enhancement since 2014

Evaporation / NaCl crystallisation

SOP centrifuges

THANK YOU

K-UTEC AG Salt Technologies | Sondershausen | Germany

Visit us at: www.k-utec.de