Competence in Salt | Foundation of Potash Research Institute of GDR | 1951 | |--|--| | Foundation of K-UTEC GmbH | 1992 | | Spin-off of K-UTEC AG Salt Technologies | 2008 | | Management Board | Dr Heiner Marx
Dr Markus Pfänder
Dr Sebastian Lüning | | Employees | approx. 100 | # _7 Decades Experience in Mineral Salt Industry # Projects Worldwide Australia Argentina Austria Belarus Bolivia Botswana Brazil Chile China Egypt Eritrea Ethiopia France Ghana Hungary India Iran Laos Mexico Peru Russia Saudi Arabia Spain Thailand Tunisia **United Kingdom** USA Brine depositsSolid deposits Company Structure ## Department of Chemical and Physical Engineering | Fields of Activities - Test work in laboratory and pilot scale - Development of process routes - Feasibility studies and economic project evaluation - Supply of key equipment - Basic engineering - Support in plant installation, commissioning and training of staff # Department of Chemical and Physical Engineering | Demonstration Facilities ## "Mannheim Process" SOP synthesis according to "Mannheim Process" runs in two discrete steps: 1.) $$KCI + H_2SO_4 \rightarrow KHSO_4 + HCI$$ 2.) $$KCI + KHSO_4 \rightarrow K_2SO_4 + HCI$$ First step is exothermic and would theoretically proceed on ambient temperature, but the second step is endothermic and needs temperatures of 600 - 700 °C. This process is both, capital and energy intensive and makes sense only if there is a demand for HCl. K-UTEC's suggestion is to avoid the high temperature process and to operate the synthesis of SOP in aqueous solution. # Alternatives to "Mannheim Process" | Pro | ocess Alternatives | Main Process Steps | Comments | |-----|--|--|--| | 1 | Production of SOP from KCI and H ₂ SO ₄ "Modified Process" | Reaction of KCI with H₂SO₄ at lower temperature (70 - 100°C) in a solid bed reactor Further treatment in aqueous solution | Energy consumption is reduced HCl output is reduced by half CaCl₂ production can be done based on mother liquor | | 2 | Production of SOP from KCI and MgSO ₄ "Schoenite Process" | Conversion of KCl and MgSO₄ in solution at low temperatures to Schoenite Conversion of Schoenite to K₂SO₄ at a temperature of about 50°C | By-product is MgCl₂ MgCl₂ can be used for CaCl₂ production using Ca(OH)₂;
by-product is Mg(OH)₂ | | 3 | Production of SOP from KCI and Na ₂ SO ₄ "Glaserite Process" | Conversion of KCl and Na₂SO₄ in solution at low temperature to Glaserite Decomposition of Glaserite to K₂SO₄ at environmental temperature | - By-product is NaCl | | 4 | Production of SOP from KCI and (NH ₄) ₂ SO ₄ | Reaction of KCl with (NH₄)₂SO₄ in solution to K₂SO₄ and NH₄Cl Crystallisation of K₂SO₄ by cooling | Recovery of SOP is low, because of the solubility equilibrium By-product is NH₄CI Crystallisation of a mixed product (K₂SO₄/NH₄CI) as NK fertiliser is recommended (or production of NPK fertiliser) | SOP production based on KCl and H₂SO₄ with reduced HCl production (Modified Process) ML = Mother Liquor SOP production based on KCl and MgSO₄ (Schoenite Process) ML = Mother Liquor SOP production based on KCl and Na₂SO₄ (Glaserite Process) ML = Mother Liquor SOP production based on KCl and (NH₄)₂SO₄ # Project Example 1 ### SOP via Schoenite Process | Location | Runn of Kutch, India | |--|--| | Resource | Bittern resulting from sea salt production | | Capacity SOP (K ₂ SO ₄) | 100,000 tpa | ### K-UTEC's Scope Test Work Process Design **Basic Engineering** Partial Detailed Engineering Support in Commissioning (2015) ## Project Example 2 ### SOP via Schoenite Process | Location | Beyondie Lake, Australia | |--|--------------------------| | Resource | Natural Brine | | Capacity SOP (K ₂ SO ₄) | 90,000 tpa | #### K-UTEC's Scope **Test Work** Process Design and Basic Engineering Detailed Engineering for the Process Plant Procurement and Supply of Key Components Support in Commissioning (2021) #### K-UIEC SALT TECHNOLOGIES # Project Example 2 Commissioning since 2021 #### K-UIEC SALT TECHNOLOGIES ## Project Example 3 #### **SOP via Glaserite Process** | Location | Ebensee, Austria | |--|-------------------------------| | Resource | KCI containing effluent brine | | Capacity SOP (K ₂ SO ₄) | 20,000 tpa | | Capacity NaCl | 60,000 tpa | SOP conversion reactor Circulation pumps #### K-UTEC's Scope **Test Work** Process Design and Basic Engineering Partial Detailed Engineering Support in Commissioning Plant in Operation since 2006 Capacity Enhancement since 2014 Evaporation / NaCl crystallisation SOP centrifuges ## **THANK YOU** K-UTEC AG Salt Technologies | Sondershausen | Germany Visit us at: www.k-utec.de