

POSTER COLLECTION ACHEMA 2022

K-UTEC AG Salt Technologies

Am Petersenschacht 7

99706 Sondershausen

Germany

Telefon: 0049-3632-610 0

Fax: 0049-3632-610 105

E-Mail: kutec@k-utec.de

http://www.k-utec.de Internet:

ENGINEERING SERVICES

Raw Material Examination **Development of Process Routes Economic Project Evaluation Process Design Basic Engineering** CAPEX / OPEX Support in Plant Installation Commissioning

Training of Staff

TECHNOLOGIES

Solution mining

Solar evaporation of seawater, natural salt lake brine and utilization of bittern

Steam evaporation and crystallisation

Beneficiation of crystallised salts

Cold and hot leaching of raw salt

De-watering and drying

Compacting and post treatment of products

PROCESS DESIGN

Hot & Cold Leaching

Brine Processing

Crystallization & Precipitation

Flotation

Solar & Thermal Evaporation

Solid-Liquid-Separation

Drying & Compaction

Packing

BASIC ENGINEERING

P&ID & Process Layout

Mass- & Energy Balances

2D & 3D - Drawings

HSE Concept

Capex & Opex Estimation

Preparation of Tender Documents

Preparation of Approval Documents

K-UTEC AG Salt Technologies

Projects Around the World

Chile Bolivia Brazil Peru
Argentina Mexico China Thailand
Laos India Iran Tunisia Egypt
Ghana Eritrea Ethiopia USA
Russia Australia

PRODUCTS OF DESIGN

NaCl Na₂SO₄ KCI K₂SO₄ MgSO₄ MgCl₂ CaSO₄ CaCO₃ CaO MgO Mg(OH)₂ MgCO₃ Ni(OH)₂ NiSO₄ BaSO₄ BaCl₂ **Borax Borates** LiCI Li₂CO₃ Li₂SO₄ **Bromine Double salts** etc. in well defined crystal and particle size

SOP - First SOP Production in Australia

SOP from Kainite Type Mixed Salt

Project Owner: Kalium Lakes Limited (KLL)

Project Location: East Pilbara region of

Western Australia

AUSTRALIA

Raw Material: Natural brine

Capacity: 16 t/h resp. 120 kt/y SOP

Technology: Conversion of KTMS to

SOP via Schoenite

Project State: Commissioning

LiOH - Production Based on Calcined Zinnwaldite

LiOH from Calcined Zinnwaldite

Project Owner: Deutsche Lithium GmbH

Project Location: Mining and mechanical treatment in

Germany

Calcination / hydrometallurgical

processing in Germany

Raw Material: Calcined Zinnwaldite (Calcine)

Capacity: 1.5 t/h resp. 12.0 kt/y LiOH·H₂O

7.0 t/h resp. 55.0 kt/y SOP 2.0 t/h resp. 15.7 kt/y CaCO₃

Technology: Leaching of Calcine

Treatment of Leach Brine

Precipitation of Li₂CO₃ mixed salt

Conversion of Li₂CO₃ into LiOH, SOP and CaCO₃

Project State: Extended Process Design

Process Flow Scheme

Li₂CO₃ - from Hectorite Containing Ore

Li₂CO₃ from Hectorite Containing Ore

Project Owner: Western Lithium Corporation

Project Location: Kings Valley Deposit

Nevada / USA

Raw Material: Calcine

Capacity: 13 kt/y Li₂CO₃

46 kt/y K₂SO₄ (SOP) 72 kt/y Na₂SO₄

Technology: Leaching of Calcine,

Evaporation and Glaserite crystallization,

Decomposition to SOP, Li₂CO₃ precipitation and

Glauber's Salt crystallization from mother liquor

Project State: In operation since 2006

K-UTEC's Scope of Work

Process Design for Production Plant

Design, Engineering, Construction and Operation of the Demonstration Plant at K-UTEC AG's Facilities

Capacity: 3 kg/h Li₂CO₃

11 kg/h K₂SO₄ (SOP) 12 kg/h Na₂SO₄

MOP - Based on Brine from Solution Mining

MOP – Treatment of Brine from Solution Mining

Project Owner: Sinohydro Mining

(LAO) Co., Ltd

Project Location: Thangone Deposit

near Vientiane

Lao

Raw material: **Brine from Solution Mining**

17 t/h / 120 kt/y KCI (MOP) Capacity:

6 t/h / 40 kt/y NaCl

Technology: **Hot Solution Mining and**

Brine Processing

Project State: Commissioned in 2011

K-UTEC's Scope of Work

Process Design and Basic Engineering

Supply of Blanket Control System

Support in Commissioning and Start-up

Training of Owner's Personnel

SOP and Thenardite - Utilisation of Bittern

SOP and Na₂SO₄ from Bittern

Project Owner: Botswana Ash (Pty) Ltd

Project Location: Sua Pan / Makgadikgadi pans

complex

North East of Botswana

Raw Material: Bittern resulting from

existing salt and soda ash plant

Capacity: 11.9 t/h resp. 80 kt/y K₂SO₄

27.5 t/h resp. 195 kt/y Na₂SO₄

Technology: Production of Thenardite by cooling

crystallization of brine and smelting

of Glauber's salt,

Hot leaching and cooling crystallization of Glaserite,

Decomposition of Glaserite to SOP

Project State: Extended Process Design

Process Flow Scheme

Layout plan Brine sample

SOP - Production by Treatment of Mother Liquor

SOP by Treatment of Mother Liquor

Project Owner: Salinen Austria AG

Project Location: Ebensee / AUSTRIA

Raw Material: Mother Liquor from Salt

Production

Capacity: 2.2 t/h resp. 20 kt/y SOP

Technology: Cooling Crystallisation of

Glaserite; Conversion of

Glaserite to SOP

Project State: In operation since 2006

SOP - Production in India from KTMS

SOP from Kainite Type Mixed Salt

Project Owner: Archean Group

Project Location: Greater Rann of Kutch

Gujarat / INDIA

Raw Material: KTMSalt

(Kainite Type Mixed Salt)

Capacity: 20 t/h resp. 100 kt/y SOP

Technology: Conversion of KTMS to

SOP via Schoenite

Project State: In operation

SOP Production Based on Kainite Typed Mixed Salt

Pilot Plant for Solution Mining

K-UTEC's Scope of Work

Feasibility Study with Process Design

Preliminary Basic Engineering

Cost Estimation and Economic Assessment

Bench Scale Solution Mining Tests

Bench Scale Solar Evaporation Tests

Project Owner: Circum Minerals Limited

Project Location: Danakil Depression / Ethiopia

Capacity: 2,000,000 t/y KCl (MOP)

750,000 t/y K₂SO₄ (SOP)

Technology: Solution Mining

Solar Evaporation SOP Production MOP Production

Project State: Feasibility Study in 2014

Detailed Feasibility Study for 750,000 t/y K₂SO₄ (SOP) in 2018

Work on Bore Hole

3D Model for SOP Plant

3D Model for MOP Plant

SOP Production Based on Kainite Typed Mixed Salt

3D Model of SOP Plant

Project Owner: Salmueras Sudamericanas S.A. Project Location: Reservorio de Cañamac / Peru

Capacity: 100,000 t/y K₂SO₄ (SOP)

60,000 t/y MgO 110,000 t/h DiCal 10,000 t/y Bromine

Technology: Brine winning and solar evaporation,

SOP via Kainite and Schoenite, Utilisation of resulting bittern for

extraction of Bromine and production of

MgO and DiCal

Project State: Basic Engineering finalised in 2013

K-UTEC's Scope of Work

Brine Winning Test

Bench Scale Tests for Solar Evaporation and Process Steps

Feasibility Study with Process Design

Basic Engineering

Cost Estimation

Economic Assessment

Solar Evaporation Test Field

3D Model of MgO Plant

Li₂CO₃ Production Based on Mixed Salt

Industrial Plant Complex

Project Owner: Corporación Minera de Bolivia

Gerencia Nacional de Recursos

Evaporiticos

Project Location: Salar de Uyuni / Bolivia

Capacity: 15,000 t/y Li₂CO₃

Quality: 99.6 % Li₂CO₃

Plant recovery: 80 %

Technology: Leaching of mixed salt and

crystallisation of Li₂CO3 in

battery quality

Project State: Detailed Engineering finalised in 2017

K-UTEC's Scope of Work

Test Works to Confirmation the Process

Process Design and Basic Engineering

Detail Engineering

Civil Engineering

Cost Estimation and Economic Assessment

Solar Evaporation Field

3D Model of Li₂CO₃ Plant

Resource-efficient Lithium Production

Excavation in the area of Mina Daniela

Battery quality achievable

With the help of solar evaporation and technical processing steps, lithium chloride with a purity of 99 % could be obtained. A plant operating in this way can be operated economically and in a more resource-efficient manner. The transfer to other natural brines containing lithium chloride is possible but requires a sufficiently high starting concentration of lithium.

Schematic representation of the main process steps

Lithium is regarded as a key raw material for the coming decades. The reason for the growing demand for lithium and lithium components is above all its importance in storing energy using lithium-ion batteries, which have become indispensable for example in mobile phones and laptops. Currently, lithium compounds are extracted from minerals and from a few salt lakes in Chile and Argentina, while large quantities of lithium remain unused.

Crystallization of the salts in the evaporation ponds

Fractionated crystallization

The aim of a research project of K-UTEC AG Salt
Technologies was the development of a resource-saving
process for the direct extraction of easily soluble lithium
salts, lithium chloride and lithium sulphate from natural
brines. The core step of the process is fractional
crystallization: lithium salts are extracted directly from
natural brines – here, for example, from the salt lake
Salinas Grandes (Argentina) – by intelligent process
control and separation of the crystallized salts. This is
saving energy- and raw material-intensive processing
steps.

